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Final entropy

Bjorken'’s formula Phase space analysis (Pal & Pratt):
N

dy

_ zfé;;iz;[—ﬁlnﬁ +(1x f)In(1 = f)]

= 5600 =500 [for 6% central Au+Au @ 200]

final

Chemical analysis (BM & Rajagopal):
ds

y E S/ N) ——=35100 200 [for same cond.]
Y

final

The 10% increase during hadronic expansion is compatible with moderate viscosity
of the hot hadronic gas phase. Quantitative study with hadronic Boltzmann cascade
would be desirable.
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Conclusion: 10-20% increase of S likely in hydrodynamic flow regime.
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Decoherence

1

Complete decoherence of coherent state generates: S, = E(IH 27tn + 1)

Application to CGC initial state, counting causally disconnected transverse domains:

1 2
Do ~—Q’R’a, /ln—n + 1\ : 1,500 (for a, = 3).
dy 2 l\ a /|

A

nucleus 1

Decoherence time can be calculated from:

Trp*(t) |
(Tr o))

exp(—t /T e )

-1 .
> Ty = €O, Wwith c=1

nucleus 2

BM & A. Schafer, PRC 73 (2006) 054905; R. Fries, BM, A. Schafer, arXiv:0807.1093 (PRC in print).




The need

Conclusion: About 50% of final entropy may be attributed to
(transverse) decoherence (~30%), hydrodynamic expansion
(~10%), and hadronic freezeout (~10%).

The remainder must be due to pre-equilibrium dynamics of
the “glasma”.

Needed: A systematic approach to computing the
transition from decohering initial color fields to
quasi-equilibrium describable by hydrodynamics.
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The problem

The von Neumann entropy S\ = —Tr[pln p]

is conserved for any closed quantum system described by a Hamiltonian.

Approach 1: For system X interacting with its environment Y, the reduced entropy

Sy = _Trx[px lan] with POy = TI‘Y[IO]

Increases as a result of growing entanglement between X and Y.
Possible approach: Consider, a rapidity interval Ay as “system” and the remainder
as “environment”, which cannot effectively communicate due to causality.

Problem: Entanglement entropy usually proportional to surface area, not volume.

Approach 2: Consider the effective growth of the entropy due to the increasing
intrinsic complexity of the quantum state after “coarse graining”.

Problem: How to coarse grain without assuming the answer ?




The “pencil on its tip”

The decay of an unstable vacuum state is a common problem, e.g., in cosmology

and in condensed matter physics. Paradigm case: inverted oscillator.
2 2
A m(t
p (t) 2

H(t) = 5+ —

with  m(t)” = w’0(-t) — A0(¢)

Wigner function:
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Theory

Wigner function

1 L e 1 (Y W T T 1 (o — 2
- - "
X -2 0 ‘ “

L
.

4
o

o< b
e

t=0.5



U
K

(0 S

Theory

Husimi transform

Problem: Wigner function cannot be interpreted as a probability
distribution, because W(p,x) is not positive (semi-)definite.

ldea (Husimi - 1940): Smear the Wigner function with a Gaussian
minimum-uncertainty wave packet:

dp’ dx’ 1 A
Ha(p,x;t) = / - exp (—m(p —p')? - g(ﬂ? — af’)Q) W(p', x';t)

H(p,x) can be shown to be the expectation value of the density matrix
in a coherent oscillator state |x+ip) and thus H(p,x) = 0 holds always.

H(p,x) can be considered as a probability density, enabling the
definition of a minimally coarse grained entropy (Wehrl - 1978):

dp dx
Sua(t) = — [ BSCHAG. ) n Ha(pait
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Wigner
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Theory

O v

SH entropy growth

s, Aopsinh 2 At
dt  opcosh2At+1+0'0

[—

. 4aS (v
Many modes: dtH > Z A H(Ak)

This is the Kolmogorov-Sinai (KS) entropy hks
known from classical dynamical system theory.

KS-entropy describes the growth rate of the
entropy for a coarse grained phase space density
in the approach toward ergodic equilibrium.

[see e.g.: Latora & Baranger, PRL 82 (1999) 520.]

— A with p,0,0,0’ constants dep. on w,A

but independent of A and h !!!

initial

equilibrium

‘
S thermal
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From Quantum Mechanics
to Quantum Field Theory:

The Wigner Functional

13
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Wigner functional

Adapt the phase space formulation to the field representation of quantum field
theory in order make the classical field limit more transparent.

Wigner functional = Adaptation to QFT. Start with a scalar quantum field ®.

Position space representation:
Wie@). M@t = [ Deo) e [—z' [ s H(l‘)sﬁ(fﬁ)] (@) + 50(@)] 1) |B(2) = Sp())

Momentum space representation:
0

WIBE). p)it] = [ Doto) exp =i [ dp (I (0)o(r) + )" (0)| (@) + 0000 (0) [05) ~ 00

[S. Mréwczynski & BM, Phys. Rev. D 50 (1994) 7452]
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Unstable vacuum in QFT

S>
=
|
N
8
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S
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o
S
KH>

(1)) with m2(t) =m?0(~t) — i* (1)

Split problem into stable ( p* > Y? ) and unstable ( p* < P? ) modes.

Initial Wigner .
1 ('Epp' +Ep|<1>p|2)

functional: WL, ®;t]=Ce ' " with B, = \/p? + m?

0,2

d 1T | 02
- g (B E e

W is constant along a classical trajectory: ~ WIIL, ®;t] = C' e

pl < U pl > 1
) = D,(t) cosh Ayt — 1, (1) sinh At ) = Dp(t) coswyt — Hz;(t) sin wyt
Hg = II,(¢) cosh A\t — A, ]ZIDP () sinh At Hg = II,(¢t) coswyt + wy ZZIDP () sinwpt
>\p=\/,u2—p2 wp:\/pQ—/ﬂ
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Entropy growth

Husimi functional:

IL,, ®,;t 2 IL,, ®,:t
H D t H eXp [_R( j’(t)lﬂ )] > H - XPp R( f{?a D) )
[pl<p Vv b pI>p A/ Ap(t) p(t)
Husimi-Wehrl entropy:
DII D® dp A (t) dp |1, A,
Suaa(t) = / HaInH :V/ [ In =2 +1]+V/ bt el Pt A |
m,a(?) 5 HalnHa a2 a2
Growth rate:
dSu A _ V/ dp op(A% + X7) sinh 2.t N V/ dp Sp(wg —~A2) sin 2wyt
at pl<p 27 Ap(t)A pl>p 27 Ap(H)A
t—00 " dp \, V,LLQ
7 v L 2T g [ Extensive (!) and independent of h ]
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Instability begets entropy

Only SH of unstable modes grows !

12
10

stable mode

- A R T * e e

= e X e
— - . - - -~ _— . _— — - e e - —
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Parametric resonance
instability
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Big Bang entropy

Other application: Reheating after cosmic inflation.

At the end of inflationary period, the scalar inflaton field falls out of its false vacuum
state and begins to oscillate around the true minimum of its potential. Other fields
coupling to the inflaton field now experience a periodically oscillating potential (or
mass in quantum field theory). Model case: scalar field with bi-quadratic coupling.

1/ . 8y % A
L) =5 (9“ 8; 6; - 92@(t)2x2) ®(t) = Do cos(wt) inflaton field
Canonical transformation:  (Xx, Pr) = (7 cOS a, wrg sin o)  Consider E

. ’ ’  single mode k.
W(a,n,r) ~ 2 @/F=0"%  with 7(1) =me 2HT <
Ha(a,n,7) =~ VA ex _O‘QA + 7’ Su.a(T) — 2ut + const.
AT Ty ReA TP\ T Ty A
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Wigner vs. Husimi

Wigner
function

Husimi
function

t=1

n

n

(04

(04
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Yang-Mills Theory



Yang-Mills Fields

(Gauge invariant) distance measure needed:
eg.. D [A(”,A(z)] =fd3x‘8(1)(x)2 — 8(2)()6)2‘

Yang-Mills Instabilities first observed in IR limit by S.G. Matinyan & G.K Savvidy (1981)

B. Miiller & A. Trayanov, PRL 68 (92) 3387
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Theory

Lyapunov spectrum

Systematic studies in T.S. Biro, C. Gong, B. Muller & A. Trayanov, I[JMP C5 (94) 113

Rescaling method permits determination of complete spectrum of eigenvalues and

eigenvectors the unstable modes.

Local instability exponents are larger
than asymptotic Lyapunov exponents
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Yang-Mills fields

hks = Z A ~ 0.079 (18L°) Anax for SU(2) Hamiltonian LGT.

A >0
/ [J. Bolte, B.M., A. Schafer, Phys. Rev D 61 (2000) 0545006]
oa ' 0.1 —
4 2
l,; o | 0.125 N _ 0-158 E
R g i Y max 3
0.2 *'."\" — L=6 1 ) ’ 3L
\-\. . Eo0.075 : " : 4: 5) . U,
01k \\.\ ] e a Sx‘n-:u;:;u:(z’ B h _ O 07 2E
n}"‘-\.\‘ » 0.025 44 A Naaed’ - Ks — VY g
L "\'":%:..”:.“ 1 Rl Linzar Ft .
" I . o esvvayal "L R ; (extensive !)
e ; " ‘ < : Energy per Plaquette |
ds dma, 4 dE, 600 GeV in central Au+Au
~0.07 ~1.1a. ~ 1,000 / (fm/c)
dy dt h x dy h (@ 200 GeV).

More systematic study of field configurations relevant to RHIC needed !
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Beyond classical YM

|dea: Use generalized Gaussian wave packets in the link representation of lattice
gauge fields [Gong, BM, Biro, Nucl. Phys. A568 (1994) 727].

2
. . g loapa | 4
Lattice (KS) Hamiltonian: H = = (El S B ED + ERe gp (1 —tr Up)>

can be scaled to dimensionless variables:

ag°H — H, t/a —t, g°F — E, g°h — h

Wave packet ansatz:

Semiclassical evolution equation obtained from variational principle:

t2
5/ (®|(ih 0y — H)|®) =0 with respect to parameters: b, (t), Ui (t), Eio (1).
tl
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Conclusions

Husimi functional provides a practical method to calculate the rate of (coarse grained)
entropy growth in quantum field theory. Various applications:

e Decay of unstable vacuum states
* Decay of coherently oscillating excited states (e.g. reheating after inflation)
e Equilibration of QCD matter

Wigner functional method permits smooth interpolation between field eigenstates and
particle excitations. This allows for the approximate treatment of quantum coherence
and uncertainty relation effects.

Classical Yang-Mills theory on the lattice exhibits many local instabilities, implying an
extensive KS entropy, which grows linearly with total energy.

Next goal: Study of the entropy growth rate of field configurations relevant to RHIC in
semiclassical lattice gauge theory. Initial state Wigner functional in the CGC model has
been constructed by Fukushima, Gelis & McLerran [Nucl. Phys. A786 (2007) 107].

TK, BM, AO, AS, Toru Takahashi & Arata Yamamoto, in progress - stay tuned.
26
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The End !
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Eqgs. of motion

1 3
Hua =37 |50 = o VB + B +4 3 (1= Sy U

where bh=v +iw,  f(v)=1(20)/11(2v) and f, = | | f(w)

lep
dEla 1 3h (0 . . .
— U, — — —E% Scaling implies:
dt f(vl) %(fp p) 8 (%) : J P
2

U, ; | | h < g°h =4mas.
- = = — | E

dt 2 (f(vl) 2vl> 10

doy  3h f(u) w

dt 8 f'(w)w’

dw 1 1 , E? 2 3 5 w?

L — — | E =t S —t

dt (f(vl) 2fUl> l + 4?][ + f(?)l) prp 16h vt (%) 7
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